178 research outputs found

    Attention is more than prediction precision [Commentary on target article]

    Get PDF
    A cornerstone of the target article is that, in a predictive coding framework, attention can be modelled by weighting prediction error with a measure of precision. We argue that this is not a complete explanation, especially in the light of ERP (event-related potentials) data showing large evoked responses for frequently presented target stimuli, which thus are predicted

    The Time Course of Attention: Selection Is Transient

    Get PDF
    The time course of attention has often been investigated using a spatial cuing task. However, attention likely consists of multiple components, such as selectivity (resolving competition) and orienting (spatial shifting). Here we sought to investigate the time course of the selective aspect of attention, using a cuing task that did not require spatial shifting. In several experiments, targets were always presented at central fixation, and were preceded by a cue at different cue-target intervals. The selection component of attention was investigated by manipulating the presence of distractors. Regardless of the presence of distractors, an initial rapid performance enhancement was found that reached its maximum at around 100 ms post cue onset. Subsequently, when the target was the only item in the display, performance was sustained, but when the target was accompanied by irrelevant distractor items, performance declined. This temporal pattern matches closely with the transient attention response that has been found in spatial cuing studies, and shows that the selectivity aspect of attention is transient

    Feature priming in visual search does not depend on the dimensional context

    Get PDF
    Visual search is speeded when the target-defining property (a feature- or dimension difference relative to the distractors) is repeated relative to when it changes, a phenomenon referred to as intertrial priming. Feature priming is usually weaker than dimension priming, and sometimes even absent. Four experiments tested the hypothesis that feature priming effects are especially weakened when the visual search task also involves dimension changes, the idea being that feature changes become less salient or less relevant relative to the bigger dimension changes. Feature changes were embedded in blocks that only contained feature changes, or in blocks that also carried dimension changes. However, regardless of type of search task, and level of display ambiguity, the dimensional context had little to no effect on the magnitude of feature priming. There were only reliable effects of ambiguity, in line with recent proposals (Meeter & Olivers, 2006)

    Mechanisms and Representations of Language-Mediated Visual Attention

    Get PDF
    The experimental investigation of language-mediated visual attention is a promising way to study the interaction of the cognitive systems involved in language, vision, attention, and memory. Here we highlight four challenges for a mechanistic account of this oculomotor behavior: the levels of representation at which language-derived and vision-derived representations are integrated; attentional mechanisms; types of memory; and the degree of individual and group differences. Central points in our discussion are (a) the possibility that local microcircuitries involving feedforward and feedback loops instantiate a common representational substrate of linguistic and non-linguistic information and attention; and (b) that an explicit working memory may be central to explaining interactions between language and visual attention. We conclude that a synthesis of further experimental evidence from a variety of fields of inquiry and the testing of distinct, non-student, participant populations will prove to be critical

    Neural Repetition Suppression Modulates Time Perception:Evidence From Electrophysiology and Pupillometry

    Get PDF
    Human time perception is malleable and subject to many biases. For example, it has repeatedly been shown that stimuli that are physically intense or that are unexpected seem to last longer. Two competing hypotheses have been proposed to account for such biases: One states that these temporal illusions are the result of increased levels of arousal that speeds up neural clock dynamics, whereas the alternative "magnitude coding" account states that the magnitude of sensory responses causally modulates perceived durations. Common experimental paradigms used to study temporal biases cannot dissociate between these accounts, as arousal and sensory magnitude covary and modulate each other. Here, we present two temporal discrimination experiments where two flashing stimuli demarcated the start and end of a to-be-timed interval. These stimuli could be either in the same or a different location, which led to different sensory responses because of neural repetition suppression. Crucially, changes and repetitions were fully predictable, which allowed us to explore effects of sensory response magnitude without changes in arousal or surprise. Intervals with changing markers were perceived as lasting longer than those with repeating markers. We measured EEG (Experiment 1) and pupil size (Experiment 2) and found that temporal perception was related to changes in ERPs (P2) and pupil constriction, both of which have been related to responses in the sensory cortex. Conversely, correlates of surprise and arousal (P3 amplitude and pupil dilation) were unaffected by stimulus repetitions and changes. These results demonstrate, for the first time, that sensory magnitude affects time perception even under constant levels of arousal

    Intertrial priming stemming from ambiguity: A new account of priming in visual search.

    Get PDF
    Sequential effects are ubiquitous in experimental psychology. Within visual search, performance is often speeded when participants search for the same target twice in a row, as opposed to two different targets. Here, we investigate such intertrial priming. Two experiments show that factors influencing search processes affect the presence and size of intertrial priming: It is larger when there are fewer elements in the visual display, and larger when there is a salient distractor present than when the target is the only salient element in the display. A control experiment showed that these increased priming effects were not due to longer baseline RTs. These findings, it is argued, are inconsistent with theories that explain intertrial priming as resulting from either only faster visual selection, or from episodic retrieval of responses. Instead, we propose that ambiguity in the stimulus or task underlies the occurrence of intertrial priming. © 2006 Psychology Press Ltd

    Beta and theta oscillations differentially support free versus forced control over multiple-target search

    Get PDF
    Many important situations require human observers to simultaneously search for more than one object. Despite a long history of research into visual search, the behavioral and neural mechanisms associated with multiple-target search are poorly understood. Here we test the novel theory that the efficiency of looking for multiple targets critically depends on the mode of cognitive control the environment affords to the observer. We used an innovative combination of electroencephalogram (EEG) and eye tracking while participants searched for two targets, within two different contexts: either both targets were present in the search display and observers were free to prioritize either one of them, thus enabling proactive control over selection; or only one of the two targets would be present in each search display, which requires reactive control to reconfigure selection when the wrong target has been prioritized. During proactive control, both univariate and multivariate signals of beta-band (15–35 Hz) power suppression before display onset predicted switches between target selections. This signal originated over midfrontal and sensorimotor regions and has previously been associated with endogenous state changes. In contrast, imposed target selections requiring reactive control elicited prefrontal power enhancements in the delta/theta band (2– 8 Hz), but only after display onset. This signal predicted individual differences in associated oculomotor switch costs, reflecting reactive reconfiguration of target selection. The results provide compelling evidence that multiple target representations are differentially prioritized during visual search, and for the first time reveal distinct neural mechanisms underlying proactive and reactive control over multiple-target search

    Oscillatory Control over Representational States in Working Memory

    Get PDF
    In the visual world, attention is guided by perceptual goals activated in visual working memory (VWM). However, planning multiple-task sequences also requires VWM to store representations for future goals. These future goals need to be prevented from interfering with the current perceptual task. Recent findings have implicated neural oscillations as a control mechanism serving the implementation and switching of different states of prioritization of VWM representations. We review recent evidence that posterior alpha-band oscillations underlie the flexible activation and deactivation of VWM representations and that frontal delta-to-theta-band oscillations play a role in the executive control of this process. That is, frontal delta-to-theta appears to orchestrate posterior alpha through long-range oscillatory networks to flexibly set up and change VWM states during multitask sequences
    corecore